Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jallcom

Interaction of the components in the Gd-Ni-Sn ternary system at 770 K

L. Romaka*, V.V. Romaka, Yu. Stadnyk, P. Demchenko

Department of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mephodiya Str. 6, 79005 Lviv, Ukraine

ARTICLE INFO

Article history: Received 21 April 2010 Received in revised form 18 May 2010 Accepted 30 May 2010 Available online 11 June 2010

Keywords: Intermetallics Crystal structure X-ray diffraction Phase diagram

1. Introduction

The Ni-containing ternary systems with rare earth metals (R) and tin were not studied completely until the present. A contribution to the investigation into R–Ni–Sn systems has been made by our research team with the study of the phase equilibria for Ce–Ni–Sn [1], Nd–Ni–Sn [2], Dy–Ni–Sn [3], and Lu–Ni–Sn [4] ternary systems. The phase relations in the Y–Ni–Sn system were partly investigated (up to 50 at.% of Sn content) and briefly described in Ref. [5]. Recently, the La–Ni–Sn system was studied by Zhuang et al. [6].

The rest of the R-Ni-Sn ternary systems were studied with the aim to find some isostructural series of the compounds and investigating their crystallographic and physical parameters. The investigated systems are characterized by a large number of the ternary stannides that are crystallized with well-known and its own structure types. The Ni-rich corner of the R-Ni-Sn phase diagrams is the more complicated and characterized by the ternary phases with the structures derivatives of CaCu₅-type. The *f*-element contribution to the chemical and structural characteristics of ternary phases generates different structure types in this part of R-Ni-Sn systems passing from light rare earths to heavy rare earth elements, but all of them content the fragment of CaCu₅-type-CeNi₅Sntype (RNi₅Sn, R=La–Nd) [7], CeCu_{4.38}In_{1.62}-type (RNi₅Sn, R=Sm, Gd-Yb) [8], Dy₂Ni₇Sn₃-type [9], HoCo_{2.6}Ga_{2.4}-type (RNi₃Sn₂, R = Y, Sm, Gd, Tb) [10], YbNi_{2-x}Sn [11] and Lu₃Co_{7.77}Sn₄-type ($R_3Ni_8Sn_4$, R = Sm, Gd) [12].

ABSTRACT

The phase equilibria in the Gd–Ni–Sn ternary system were determined at 770K by means of X-ray and metallographic analyses in the whole concentration range. The Gd–Ni–Sn system is characterized by formation of 14 ternary intermetallic compounds: GdNi_{4.89}Sn (CeCu_{4.38}In_{1.62}-type), Gd₁₂Ni₆Sn (Sm₁₂Ni₆In-type), Gd₆Ni₂Sn (Ho₆Co₂Ga-type), Gd₂Ni₂Sn (W₂CoB₂-type), GdNiSn (TiNiSi-type), Gd₂Ni₇Sn₃ (Dy₂Ni₇Sn₃-type), Gd₃Ni₈Sn₄ (Lu₃Co_{7.77}Sn₄-type), GdNi₃Sn₂ (HoNi_{2.6}Ga_{2.4}-type), GdNi₂Sn₂ (LaPt₂Ge₂-type), GdNiSn₂ (LuNiSn₂-type), Gd₃Ni₄Sn₆ (Ce₃Pd₄Sn₆-type), Gd₄₀Ni₁₅Sn₄₅ (structure unknown), GdNi_{2.67}Sn_{5.44} (GdNi_{2.67}Sn_{5.44}-type), and GdNiSn₄ (LuNiSn₄-type). The crystal chemistry analysis of ternary compounds formed in the Gd–Ni–Sn system was done.

© 2010 Elsevier B.V. All rights reserved.

The preliminary information about Gd–Ni–Sn ternary system at 770 K (0–50 at.% Sn) and 670 K (more than 50 at.% Sn) was reported in Ref. [5], but the phase equilibria were not presented. The most compounds we found and studied earlier during the investigation of isotypic series of ternary compounds formed in R–Ni–Sn systems and crystallographic parameters for them are gathered in Ref. [5]. With regard to the work in progress on the R–Ni–Sn ternary systems and new ternary stannides, it was decided to perform the detailed study the Gd–Ni–Sn system at 770 K, especially in Ni-rich region.

2. Binary boundary systems

The binary boundary Gd–Sn, Gd–Ni and Ni–Sn systems have been investigated earlier and their phase diagrams are well known in the literature; they are briefly described in the following.

2.1. Ni-Sn system

The version of this well-known phase diagram, used here is taken from Massalski [13] and Villars [14]. In the system three phases are observed: Ni_3Sn (own type), Ni_3Sn_2 (low-temperature phase, own type), Ni_3Sn_4 (own type). The peritectoid formation of the NiSn phase at 873 K was reported in Ref. [15].

2.2. Gd-Sn system

The data concerning the Gd–Sn binary system were used according to Refs. [5,13,14]. Six phases form at 770 K: Gd_5Sn_3 (Mn_5Si_3 -type), Gd_5Sn_4 (Sm_5Ge_4 -type), $Gd_{11}Sn_{10}$ ($Ho_{11}Ge_{10}$ -type), $GdSn_2$ ($ZrSi_2$ -type), Gd_3Sn_7 (own type), $GdSn_{2.75}$ (own type). The

^{*} Corresponding author. E-mail address: romakal@franko.lviv.ua (L. Romaka).

^{0925-8388/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2010.05.170

Table 1

Crystallographic characteristics of the compounds in the Gd-Ni-Sn ternary system.

No. ^a	Compound	Structure	Space	Lattice parameters (n	m)	
		type	group	a	b	С
1	Gd ₁₂ Ni ₆ Sn	Sm ₁₂ Ni ₆ In	Im–3m	0.99406(2)	-	-
2	Gd ₆ Ni ₂ Sn	Ho ₆ Co ₂ Ga	Immm	0.9480(4)	0.9658(6)	1.0023(3)
3	GdNi _{4.89} Sn	CeCu _{4.38} In _{1.62}	Pnnm	1.60369(1)	1.01807(1)	0.48464(1)
4	Gd ₂ Ni ₂ Sn	W ₂ CoB ₂	Immm	0.4294(1)	0.5638(1)	0.8390(1)
5	Gd ₂ Ni ₇ Sn ₃	Dy ₂ Ni ₇ Sn ₃	Стса	0.86341(5)	2.3779(1)	0.75553(5)
6	Gd ₃ Ni ₈ Sn ₄	Lu ₃ Co _{7.77} Sn ₄	$P6_3mc$	0.89003(2)	_	0.74711(5)
7	GdNi ₃ Sn ₂	HoGa _{2.4} Ni _{2.6}	P6/mmm	0.91858(4)	-	0.42670(2)
8	GdNiSn	TiNiSi	Pnma	0.7236(3)	0.4461(1)	0.7676(4)
9	$GdNi_2Sn_2$	$LaPt_2Ge_2$	<i>P</i> 12 ₁ 1	0.4367(4) $\beta = 90.223(5)^{\circ}$	0.4365(4)	0.9700(8)
10	$Gd_3Ni_4Sn_6$	$Ce_3Pd_4Sn_6$	Pnma	1.5221(4)	0.4361(5)	1.4406(3)
11	$Gd_{40}Ni_{15}Sn_{45}$			Structure unknown		. ,
12	GdNiSn ₂	LuNiSn ₂	Pnma	1.60628(8)	0.44325(2)	1.4672(7)
13	GdNi _{2.67} Sn _{5.44}	GdNi _{2.67} Sn _{5.44}	Im-3	1.1854(6)	-	-
14	GdNiSn ₄	LuNiSn ₄	Ammm	0.4410(1)	2.8325(3)	0.4369(1)

^a The compounds number corresponds to the figures in the phase diagram (Fig. 1).

existence of high temperature phase GdSn₃ with cubic Cu₃Au-type was reported in Ref. [16].

2.3. Gd-Ni system

The phase diagram as assessed by Massalski [13] and Villars [14] has been taken for our investigation. Nine binary phases are formed at 770 K in the Gd–Ni system: Gd₂Ni₁₇ (Th₂Ni₁₇-type), GdNi₅ (CaCu₅-type), GdNi₄ (structure unknown), Gd₂Ni₇ (Ce₂Ni₇-type), GdNi₃ (PuNi₃-type), GdNi₂ (MgCu₂-type), GdNi (Tll-type), Gd₃Ni₂ (structure unknown), and Gd₃Ni (CFe₃-type).

3. Experimental

The samples were prepared by a repeated arc melting of the constituent elements (gadolinium with a purity of 99.8 wt.%, nickel—99.99 wt.%, tin—99.99 wt.%) under high purity Ti-gettered argon atmosphere on a water-cooled copper crucible. The weight losses of the initial total mass were lower than 1 wt.%. The alloys were annealed at 770 K in evacuated silica tubes for 1 month and quenched in cold water.

Phase analysis was performed using X-ray powder diffraction of the synthesized samples (RKD-57 with CrK radiation and DRON-2.0M with FeK_{\alpha} radiation). The observed diffraction intensities were compared with reference powder patterns of binary and known ternary phases. The compositions of the obtained samples were examined by Scanning Electron Microscopy (SEM) using JEOL-840A scanning microscope. Quantitative electron probe microanalysis (EPMA) of the phases was carried out using an energy-dispersive X-ray analyser with the pure elements as standards (an acceleration voltage was 20 kV; K- and L-lines were used). The data for the crystal structure refinements were collected at room temperature using HZG-4a (CuK_{\alpha} radiation), STOE STADI P (CuK_{\alpha1} radiation) and Bruker D8 diffractometers (graphite monochromator, CuK_{\alpha1} radiation, 20–100° 2 θ range with scanning step 0.02° and 20 s exposure time). Calculations of the unit cell parameters and theoretical patterns were performed using the CSD [17] and WinPLOTR [18] program packages.

4. Results and discussion

The phase equilibria in the Gd–Ni–Sn ternary system have been established at 770 K using X-ray analysis of 215 ternary and binary alloys. The isothermal sections of this system are presented in Fig. 1. The microphotographs of some alloys are shown in Fig. 2. The Gd–Ni–Sn system is characterized by the formation of 14 ternary compounds crystallographic characteristics of which are listed in Table 1.

The presence of almost all binary compounds in the Gd–Sn and Ni–Sn systems corresponding to the reference data was confirmed. To check the existence of the NiSn binary stannide [15] the several alloys of closed compositions were prepared and annealed at 770 K, 870 K, and 1070 K. Phase analysis of the corresponding samples showed the presence of two phases—Ni₃Sn₄ and Ni₃Sn₂ at all investigated temperatures. In the Gd–Ni binary system we have synthesized all the samples with the stoichiometry corre-

sponding to the literature data. Phase analysis of the corresponding samples confirmed a formation of Gd_2Ni_{17} (Th_2Ni_{17} -type), $GdNi_5$ ($CaCu_5$ -type), Gd_2Ni_7 (Ce_2Ni_7 -type), $GdNi_3$ ($PuNi_3$ -type), $GdNi_2$ ($MgCu_2$ -type), GdNi (TII-type), and Gd_3Ni (CFe_3 -type) binaries. The powder patterns of alloys at $GdNi_4$ and Gd_3Ni_2 stoichiometry content two phases: $GdNi_5 + Gd_2Ni_7$ and $GdNi + Gd_3Ni$, respectively.

A formation of interstitial solid solutions based on the RSn₂ (R = Gd–Lu) series of binary compounds with ZrSi₂ structure was reported in Refs. [19,20] and was confirmed for Gd during investigations of Gd–Ni–Sn system. The Ni solubility in the GdSn₂ (ZrSi₂-type) binary compound is equal to 7 at.%, and the solid solution has a direction toward the GdNiSn₂ compound. The volume of the unit cell of the solid solution samples increases with increasing of the nickel content in the alloys confirming the formation of the solid solution formed by insertion of nickel atoms into the GdSn₂ structure and can be described using GdNi_xSn₂ formula (Table 2). The formation of the GdNi_{5 – x}Sn_x solid solution formed by substitution of the nickel atoms by tin in GdNi₅ (CaCu₅-type) up to 5 at.% Sn was found. The compositions and values of the lattice parameters are given in Table 3.

The existence of the earlier known Gd_6Ni_2Sn (Ho_6Co_2Ga -type) [21], $Gd_{12}Ni_6Sn$ ($Sm_{12}Ni_6In$ -type) [22], $GdNi_5Sn$ ($CeCu_{4.38}In_{1.62}$ type) [8], $GdNi_3Sn_2$ ($HoNi_{2.6}Ga_{2.4}$ -type) [10], $GdNi_2Sn_2$ ($CaBe_2Ge_2$ type) [5], $GdNiSn_2$ ($LuNiSn_2$ -type) [23], GdNiSn (TiNiSi-type) [24],

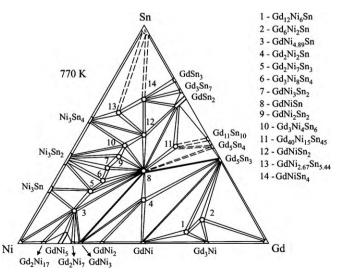
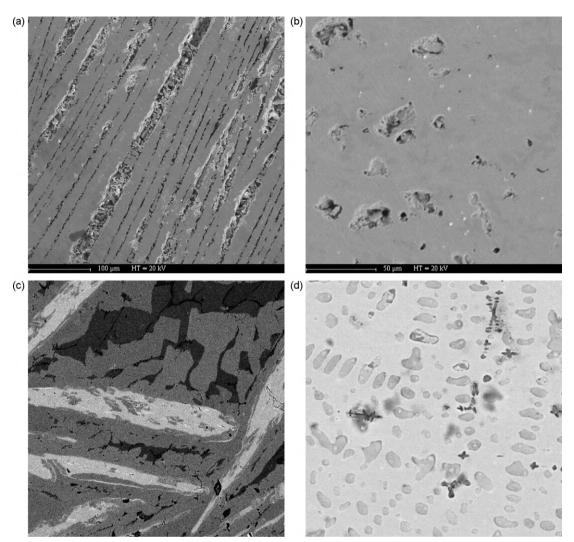



Fig. 1. Isothermal section of the Gd-Ni-Sn phase diagram at 770 K.

Fig. 2. Electron micrographs of the alloys: (a) $Gd_{17}Ni_{20}Sn_{63}$ -GdNiSn₄ (gray phase); GdNiSn₂ (white phase); GdNi_{2.67}Sn_{5.44} (black phase); (b) $Gd_{10}Ni_{30}Sn_{60}$ -GdNi_{2.67}Sn_{5.44} (gray phase); (c) $Gd_{15}Ni_{50}Sn_{35}$ -GdNi₃Sn₂ (gray dark phase); GdNi₂Sn₂ (gray light phase); Ni₃Sn₂ (black phase); (d) $Gd_{63}Ni_{27}Sn_{10}$ -Gd₁₂Ni₆Sn (gray light phase); GdSn₃ (gray phase).

 $\begin{array}{l} GdNi_{2.67}Sn_{5.44} \ (own \ structure \ type) \ [25], \ Gd_2Ni_2Sn \ (W_2CoB_2-type) \\ [26], \ and \ GdNiSn_4 \ (LuNiSn_4-type) \ [27] \ compounds \ was \ confirmed \\ and \ new \ ternary \ stannides \ were \ found: \ Gd_3Ni_8Sn_4, \ Gd_2Ni_7Sn_3, \\ Gd_3Ni_4Sn_6, \ and \ \sim Gd_{45}Ni_{15}Sn_{40}. \end{array}$

By the results of X-ray analysis of the samples in the Ni-rich part of the Gd–Ni–Sn system two new ternary compounds at compositions Gd₁₅Ni₆₅Sn₂₀ and Gd₂₀Ni₅₃Sn₂₇ were found. The powder pattern of the Gd₂₀Ni₅₃Sn₂₇ sample was indexed on the basis of the hexagonal lattice with cell parameters a=0.89003(2) nm, c=0.74711(5) nm, and indicated that this compound belongs to the Lu₃Co_{7.77}Sn₈ type structure (space group *P*6₃*mc*). The crystal structure of Gd₃Ni₈Sn₄ compound was determined using X-ray powder diffraction method (HZG-4a, WinPLOTR package). Refined atomic coordinates and displacement parameters are listed in Table 4. The observed, calculated and difference X-ray patterns of Gd₂₀Ni₅₃Sn₂₇ sample are shown in Fig. 3. The analysis of the structure showed that interatomic distances Gd–Sn1 (0.3176 nm), Ni2–Ni4 (0.2413 nm), and Ni–Sn (0.2520 nm) are shorter than the sum of the respective atomic radii. The Gd₂Ni₇Sn₃ compound formed at Gd₁₅Ni₆₅Sn₂₀ composition was found to be isostructural to the previously studied Dy₂Ni₇Sn₃ compound crystallized in own structure type (space group *Cmca*) [9] with the lattice parameters *a* = 0.86341(5) nm, *b* = 2.3779(1) nm, *c* = 0.75553(5) nm.

Composition and I	lattice parameters of	the samples of the	GdNi _x Sn ₂ solid solution.

Composition	Lattice param	Lattice parameters (nm)			
	а	b	С		
Gd ₃₃ Sn ₆₇ ^a	0.4428	1.6410	0.4322	0.3141	
Gd ₃₃ Ni ₂ Sn ₆₅ ^a	0.4429(8)	1.649(2)	0.4331(2)	0.3163	
Gd ₃₂ Ni ₅ Sn ₆₃ ^a	0.4431(9)	1.658(1)	0.4343(1)	0.3191	
Gd ₃₁ Ni ₇ Sn ₆₂ ^a	0.4433(9)	1.667(1)	0.4357(2)	0.3219	
Gd ₃₀ Ni ₁₀ Sn ₆₀ ^b	0.4434(7)	1.667(1)	0.4359(3)	0.3221	

^a Single phase sample.

^b Two phase sample.

Table 3

Composition and	lattice parameters of	the samples of the	$GdNi_{5-x}Sn_x$ solid solution.

Composition	Lattice parame	Lattice parameters (nm)			
	a	b	С		
Gd ₁₇ Ni ₈₃ ^a	0.4907(3)	-	0.3965(3)	0.08156	
Gd ₁₇ Ni ₈₁ Sn ₂ ^a	0.4872(1)	-	0.3973(1)	0.08167	
Gd ₁₇ Ni ₇₈ Sn ₅ ^a	0.4943(4)	-	0.3968(4)	0.08180	
Gd ₁₇ Ni ₇₆ Sn ₇ ^b	0.4944(5)	-	0.3968(2)	0.08180	

^a Single phase sample.

^b Two phase sample.

Table 4

Atomic positional and isotropic displacement parameters for the $Gd_3Ni_8Sn_4$ compound ($R_p = 0.0185$, $R_{wp} = 0.0235$, $R_{Bragg} = 0.1030$).

Atom	Wyckoff position	x/a	y/b	z/c	$B_{\rm iso}\times 10^2~(\rm nm^2)$
Gd	6 <i>c</i>	0.47533(7)	0.52467(7)	0	1.03(4)
Ni1	6 <i>c</i>	0.8364(6)	0.1635(6)	0.8360(10)	0.76(5)
Ni2	6 <i>c</i>	0.8936(2)	0.1063(2)	0.5228(11)	0.76(5)
Ni3	2b	1/3	2/3	0.6831(17)	0.76(5)
Ni4	2a	0	0	0.2860(14)	0.76(5)
Sn1	6 <i>c</i>	0.8295(2)	0.1704(2)	0.2110(6)	0.27(2)
Sn2	2 <i>b</i>	1/3	2/3	0.3236(7)	0.27(2)

The crystal structure of the GdNi₂Sn₂ compound was refined during our investigation by powder method (Bruker D8, Win-PLOTR package). According to Ref. [5] this compound crystallizes in the CaBe₂Ge₂ structure type (SG P4/nmm) with unit cell parameters a = 0.4369(5) nm, c = 0.9709(3) nm, but the structure refinements using this starting model were not satisfactory. Previous investigation of isotypic CeNi₂Sn₂ compound showed two polymorphic modifications-tetragonal with CaBe₂Ge₂-type and monoclinic one with LaPt₂Ge₂-type [5,28]. Thus, for further crystal structure calculations of GdNi₂Sn₂ the starting model of the monoclinic LaPt₂Ge₂ structure was chosen. The powder pattern reflections of the GdNi₂Sn₂ phase were well indexed in $P12_11$ space group with lattice parameters a = 0.43674(4) nm, b = 0.43650(4) nm, c = 0.97005(8) nm, $\beta = 90.223(5)^{\circ}$. However, the sample contains some phase/phases which were not identified due to the rather high background and low quality of diffraction pattern. To confirm the model of the structure, the single crystal investigation of this compound is carrying out.

The existence of the GdNiSn₂ compound and its lattice parameters were reported earlier [23]. During present work, the crystal structure of this stannide was refined by X-ray powder diffraction method (HZG-4a, WinPLOTR package). The GdNiSn₂ compound crystallizes in the LuNiSn₂-type structure (space group *Pnma*, a = 1.60628(8) nm, b = 0.44325(2) nm, c = 1.46727(7) nm) with the atomic parameters presented in Table 5. The observed, calculated and difference X-ray patterns of the GdNiSn₂ compound are shown in Fig. 4.

The detailed crystal structure refinements performed on $Gd_{15}Ni_{70}Sn_{15}$ sample confirmed a formation of $GdNi_5Sn$ compound with $CeCu_{4.38}In_{1.62}$ -type (space group *Pnnm*, a = 1.60369(1)nm, b = 1.01807(1)nm, c = 0.48464(1)nm). The refinements of the site occupancies showed that two 4g positions for Ni1 and Ni2 atoms are occupied by 89% and 88%, respectively. Thus, the chemical for-

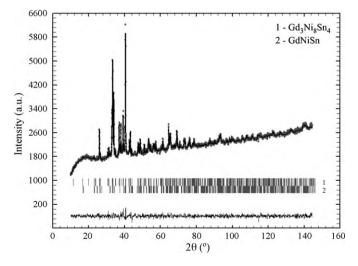


Fig. 3. The observed, calculated and difference X-ray patterns of $Gd_{20}Ni_{53}Sn_{27}$ sample.

Га	bl	le	5
----	----	----	---

Atomic positional and isotropic displacement parameters for the GdNiSn₂ compound ($R_{\text{Bragg}} = 0.114$, $R_p = 0.027$, $R_{wp} = 0.034$).

Atom	Wyckoff position	x/a	y/b	z c	$\frac{B_{\rm iso}{}^{\rm a}\times 10^2}{(\rm nm^2)}$
Gd1	4 <i>c</i>	0.8488(9)	1/4	0.5273(1)	0.40(1)
Gd2	4 <i>c</i>	0.3757(9)	1/4	0.2325(9)	0.40(1)
Gd3	4 <i>c</i>	0.1439(8)	1/4	0.1101(1)	0.40(1)
Ni1	4 <i>c</i>	0.5504(2)	1/4	0.8933(2)	0.64(9)
Ni2	4 <i>c</i>	0.8027(2)	1/4	0.7484(2)	0.64(9)
Ni3	4 <i>c</i>	0.2941(2)	1/4	0.4547(2)	0.64(9)
Sn1	4 <i>c</i>	0.1842(9)	1/4	0.3308(1)	0.49(8)
Sn2	4 <i>c</i>	0.4516(1)	1/4	0.4512(1)	0.49(8)
Sn3	4 <i>c</i>	0.0223(1)	1/4	0.4187(1)	0.49(8)
Sn4	4 <i>c</i>	0.7147(9)	1/4	0.8866(2)	0.49(8)
Sn5	4 <i>c</i>	0.9611(1)	1/4	0.7551(1)	0.49(8)
Sn6	4 <i>c</i>	0.6687(1)	1/4	0.6230(1)	0.49(8)

^a The isotropic displacement parameters were constrained for each atomic element.

mula of the compound should be written as GdNi_{4.89}Sn. The atomic parameters are presented in Table 6, the observed, calculated and difference X-ray patterns of the GdNi_{4.89}Sn compound are shown in Fig. 5.

According to Ref. [5] the Gd–Ni–Sn system is characterized by the formation of two ternary compounds with \sim Gd₂₀Ni₃₅Sn₄₅ and \sim Gd₂₅Ni₃₂Sn₄₃ compositions. By the results of X-ray and metallographic analyses of the corresponding samples we have found that above mentioned phases in fact represent only one ternary compound at Gd₂₃Ni₃₂Sn₄₅ composition with Ce₃Pd₄Sn₆ structure type (space group *Pnma*, *a* = 1.5221(4) nm, *b* = 0.4361(5) nm, *c* = 1.4406(3) nm).

All ternary compounds in the Gd–Ni–Sn ternary system are characterized by narrow homogeneity ranges at investigated temperature.

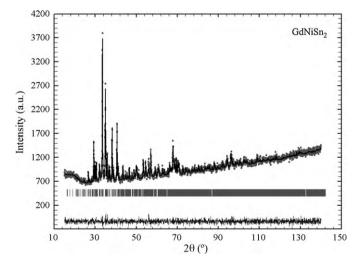


Fig. 4. The observed, calculated and difference X-ray patterns of the GdNiSn₂ compound.

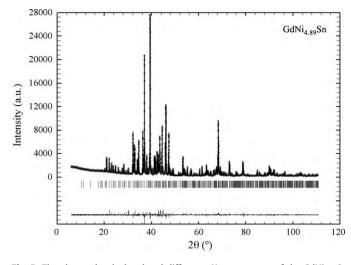
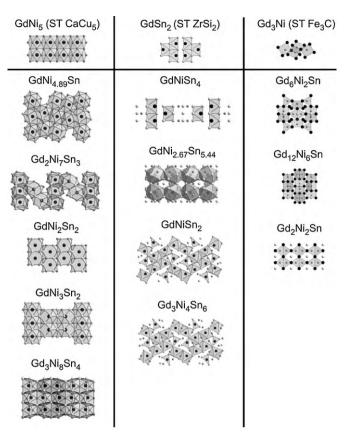


Fig. 5. The observed, calculated and difference X-ray patterns of the ${\rm GdNi}_{\rm 4.89}{\rm Sn}$ compound.

The crystal chemistry analysis of ternary compounds formed in the Gd-Ni-Sn system showed that they could be divided into several groups based on the structural fragments of several binary compounds: GdSn₂ (ZrSi₂-type), GdNi₅ (CaCu₅-type), Gd₃Ni (Fe₃Ctype) as presented in Fig. 6. Previously we performed the crystal chemistry analysis for compounds formed in the Dy-Ni-Sn ternary system [3]. The studied Gd-Ni-Sn system is characterized by the presence of higher number of intermediate phases and this fact allowed us to complete our classification. especially for derivatives of CaCu₅-type and Fe₃C-type. The GdNiSn compound belongs to TiNiSi structure type and is a derivative of Gd₁₁Sn₁₀ binary stannide (Ho11Ge10-type). According to the systemic the covalence contribution in the ternary compounds of ZrSi₂-type group decreases with the increasing distance from appropriate ternary stannide to the GdSn₂. The compounds that belong to CaCu₅-type group are characterized by strong Ni-Ni interaction and large coordinate numbers for Gd atoms. The compounds of Fe₃C-type group are characterized by short Gd-Ni and Gd-Gd distances.

In conclusion the Gd–Ni–Sn ternary system is characterized by more complicated character of the phase relations which take place in the series of the R–Ni–Sn systems where R–La, Ce, Nd, Dy and Lu, investigated for the present time. The existence of 14 ternary phases in this system is a result of the interaction between the components in all parts of the diagram. The similarity in the inter-


Table 6

Atomic and isotropic displacement parameters for the GdNi_{4.89}Sn compound ($R_{Bragg} = 0.047$, $R_p = 0.056$, $R_{wp} = 0.082$).

Atom	Wyckoff position	x/a	y/b	z/c	$\frac{B_{\rm iso}^{a}\times 10^{2}}{(\rm nm^{2})}$
Gd1	2a	0	0	0	0.19(6)
Gd2	2d	1/2	0	0	0.19(6)
Gd3	4g	0.7508(1)	0.3835(2)	0	0.19(6)
Ni1 ^b	4g	0.2195(4)	0.2972(6)	0	0.25(2)
Ni2 ^b	4g	0.5843(4)	0.4559(6)	0	0.25(2)
Ni3	4g	0.4668(4)	0.3080(6)	0	1.32(1)
Ni4	4g	0.3984(4)	0.1509(6)	0	1.32(1)
Ni5	4g	0.1721(3)	0.0730(6)	0	1.32(1)
Ni6	4g	0.1007(4)	0.4608(7)	0	1.32(1)
Ni7	8h	0.5923(2)	0.2545(4)	0.2472(8)	1.33(1)
Ni8	8h	0.8424(3)	0.1351(4)	0.2520(7)	1.33(1)
Sn1	4g	0.9478(2)	0.3022(2)	0	1.13(9)
Sn2	4g	0.6945(1)	0.0851(2)	0	1.13(9)

^a The isotropic displacement parameters were constrained for each atomic element.

^b Occupation: Ni1 = 0.89(1); Ni2 = 0.88(1).

 ${\bf Fig.\,6.}\,$ Distribution of compounds by the similarity of the structures in the Gd–Ni–Sn system.

action of the components in all investigated systems is displayed by the formation of compound with the equiatomic composition in the whole rare earth elements crystallizing with the TiNiSi structure type, and the formation of RNiSn₂ (CeNiSi₂ and LuNiSn₂-types) and RNi₅Sn series compounds (CeNi₅Sn-type and CeCu_{4.38}In_{1.62}type). Comparing the present study of the Gd–Ni–Sn system and data reported in Ref. [5] we may note a formation 14 ternary phases at 770 K. The more remarkable difference is related to the Ni- and Sn-rich parts of Gd–Ni–Sn system, where two new Gd₃Ni₈Sn₄ and Gd₂Ni₇Sn₃ phases were found, and the existence of ~Gd₂NiSn₇ was not confirmed, respectively.

References

- [1] R.V. Skolozdra, L.P. Komarovskaja, Izv. Akad. Nauk SSSR Ser. Met. 2 (1988) 214.
- [2] L. Romaka, M. Konyk, V.V. Romaka, N. Melnychenko, P. Rogl, J. Alloys Compd. 454 (2008) 136.
- [3] V.V. Romaka, P. Rogl, L. Romaka, N. Melnychenko, J. Alloys Compd. 485 (2009) 275.
- [4] R.V. Skolozdra, L.P. Komarovskaja, Izv. Akad. Nauk SSSR Ser. Met. 3 (1988) 199.
- [5] R.V. Skolozdra, in: K.A. Gschneidner Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare-Earths, vol. 24, North-Holland, Amsterdam, 1997 (Chapter 164).
- [6] Y. Zhuang, H. Deng, J. Liu, Q. Yao, J. Alloys Compd. 363 (2004) 223.
- 7] R.V. Skolozdra, L.P. Komarovskaya, DAN Ukr. SSR. Ser. A 6 (1982) 83.
- [8] R. Skolozdra, R. Szymczak, H. Szymczak, L. Romaka, M. Baran, J. Phys. Chem. Solids 57 (1996) 357.
- [9] V. Romaka, R. Gladyshevskii, B. Marciniak, V. Pavlyuk, Acta Crystallogr. C: Cryst. Struct. Commun. C64 (2008) i45.
- R.V. Skolozdra, L.P. Komarovskaya, L.G. Akselrud, Izv. Akad. Nauk SSSR Neorg. Mater. 24 (9) (1988) 1490.
 C. Rizzoli, P.S. Salamakha, O.L. Sologub, G. Bocelli, J. Alloys Compd. 340 (2002)
- 146.
- [12] L. Romaka, V. Davydov, V. Romaka, Visnuk Lviv Univ. Ser. Khim. 49 (2008) 21.
- [13] T.B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1990.
- [14] P. Villars, L.D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park, OH, 1991.
- [15] M.K. Bhargava, K. Shubert, J. Less-Common Met. 33 (1973) 181.

- [16] I.G. Kulagina, A.P. Bayanov, N.M. Kulagin, Izv. Akad. Nauk SSSR Met. 3 (1985) 213.
- [17] L.G. Akselrud, Yu.N. Gryn, P.Yu. Zavalij, V.K. Pecharsky, V.S. Fundamensky, XII Europian Crystallography Meeting, Collected Abstracts, vol. 3, Moscow, 1989, p. 155.
- [18] J. Rodriguez-Carvajal, FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, version 3.5d, Laboratoire Léon Brillouin (CEA-CNRS), Saclay, France, 1998.
- [19] G. Venturini, M. Francois, B. Malaman, B. Roques, J. Less-Common Met. 160 (1990) 215.
- [20] M. Francois, G. Venturini, B. Malaman, B. Roques, J. Less-Common Met. 160 (1990) 197.
- [21] O.M. Sichevich, L.P. Komarovskaja, Yu.N. Grin, Ya.P. Yarmolyk, R.V. Skolozdra, Ukr. Phyz. J. 29 (1984) 1342.

- [22] L. Romaka, O. Senkovska, D. Fruchart, D. Gignoux, J. Magnet. Magn. Mater. 242-245 (2002) 854.
- [23] L.P. Komarovskaya, L.G. Akselrud, R.V. Skolozdra, Kristallografiya 28 (1983) 1201.
- [24] A.E. Dwight, J. Less-Common Met. 93 (1983) 411.
- [25] L.G. Akselrud, L.P. Komarovskaya, R.V. Skolozdra, DAN Ukr. SSR Ser. B 5 (1983) 35.
- [26] B. Chevalier, F. Fourgeot, D. Laffargue, P. Gravereau, L. Fournes, J. Etourneau, J. Alloys Compd. 262–263 (1997) 114.
- [27] R.V. Skolozdra, J.S. Mudryk, L.G. Akselrud, D. Fruchart, D. Gignoux, J. Pierre, L.P. Romaka, D. Schmitt, J. Alloys Compd. 296 (2000) 303.
- [28] J. Pierre, B. Lambert-Andron, R.V. Skolozdra, J. Rodriguez-Carvajal, K. Kaczmarska, Phys. B: Condens. Matter 202 (1994) 143.